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Predesolventizing of Soybean Meal 
K. WEBER, Extraktionstechnik GmbH, Postfach 76 03 69, HumbotdtstraBe 56, D-2000 
Hamburg 76, West Germany 

ABSTRACT 

Predesolventizing of meal provides opportunities for potential savings 
in the extraction operation. The reduction of the moisture level in 
meal can save considerable energy during the meal drying operation. 
Ways to reduce the hexane content before drying include: (a) chan- 
ging seed preparation; (b) increasing drainage time; (c) mechanical 
pressing; (d) evaporating by indirect heating; (e) circulating metallic 
heat transferring units; and (f) using new technology. These options 
are evaluated in terms of economics and operating efficiencies. 

PREDESOLVENTIZ ING OF SOYBEAN MEAL 

Predesolventizing means removal of  solvent from the extrac- 
ted meal by means other than direct steam condensation, 
and it is regarded as a potential  source for energy conserva- 
tion. Of course, such a procedure will have different impacts 
on the energy involved, depending on the type of seed being 
treated. 

This paper  only deals with predesolventizing of  soybean 
meal and its aim is to analyze the technical and economical 

advantages which can be offered by a predesotventizing sys- 
tem incorporated into a conventional soybean plant  and to 
demonstrate the limits for predesolventizing defined by 
other parameters to be respected in a normal soybean ex- 
traction operation. 

For  comparison purposes, all the following technical and 
economical considerations are related to a 600 ton /day  con- 
tinuous soybean plant running 300 days per year and 
having a multistage desolventizer/toaster (DT) with a rela- 
tively meager heat exchange surface followed by a meal 
drying step using hot  air and a meal cooler to achieve 12% 
moisture and 30 C in the finished meal. 

Technical and Economic Considerations 
The steam requirement  (Fig. 1) to accomplish the whole 
operation of  desolventizing/toasting and drying shows an 
increase in steam consumption as a function of  the soybean 
flake moisture and the solvent retention in the extracted 
meal. 
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FIG. 1. Steam consumption DT/meal drier. 
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PREDESOLVENTIZING OF SOYBEAN MEAL 

Figure 2 shows the variation in the meal moisture when 
leaving the DT as a function of flake moisture and solvent 
retention in the meal. It also shows the lower limit of 18% 
for the meal moisture after DT dictated by the necessity of 
reducing urease activity and antithrypsin factor to accept- 
able levels, in accordance with the industrial practice. 

Besides the limit prescribed by the urease activity and 
antithrypsin factor, the heat recovery of  DT vapors prac- 
tised in the first miscella distillation step of a normal ex- 
traction plant also limits the application of predesolventiz- 
ing systems. 

Starting from a rich miscella concentration of  30% after 
extraction, a concentration of  ca. 75% is normally expected 
after the first column of  the distillation plant. 

As DT vapors of ca. 72C have a higher enthalpy, due to 
entrained steam, than pure solvent vapors generated in a 
meal predesolventizing system, a certain limit must be de- 
fined for predesolventizing. Otherwise, additional steam 
would be required for the distillation plant. 

These two pertinent limits are shown in Figure 3. From 
the view of  sufficient moisture level in the meal, the area on 
the fight side of the line (a) is ~vailable for predesolven- 
tizing procedures. Down to line (b), theoretically a mechani- 
cal predesolventizing would be feasible without influencing 

XH % 

32 flOke dr~ng 

2~ ~ - ~ . : ~  , - . . . . . . . . . . .  

10 
7,9 . . . .  .~2 ~_~ -~ -~  . . . .  

5 

0 ,. , ,  z z 4 / /  , x / / . / / " :  - ' " "  
7 8 10 11 

theo¢ limit of mechn. 
~ed~,sok,~:mng 

)0 
mechn. 

~,e<lesolve vliz~ 

b 

12 1~ ~ x.l'41 

FIG. 3. The l e a  of  predesolvendzing.  
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FIG. 2. Meal moisture after DT.  
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the heat requirements of the distillation. And down to line 
(c] - Cs ), a thermal predesolventizing can be envisaged with- 
out disturbing the miscella distillation. 

Figure 3 demonstrates that at point O, defined by 12% 
flake moisture and 32% solvent retention, there are 2 possi- 
ble extreme paths (A) and (B). These involve either reducing 
the flake moisture to ca. 9% and improving drainage to 26% 
residual solvent, or using additional drainage to 28% thermal 
predesolventizing to ca. 8% solvent residue, before going 
into the DT system dictated by line (a). As a result, three 
possible locations for predesolventizing system can be con- 
sidered, as shown in Figure 4. 

The following systems for predesolventizing are actually 
available or are results of recent developments. 

Mechanical predesolventizing. This involves increase of grav- 
ity drainage time in the extractor or additional drainer, and 
forced drainage by a differential pressure drainer. 

Thermal predesolventizing. This involves fluidbed flake 
dryer, Schnecken-type desolventizer, rotary pipebundle 
dryer, flash desolventizing system, and circulating heat 
transfer bodies. 

Systems wbicb provide a certain predesolventizing effect. 
These include the Alcon process, extruding of solvent wet 
meal, flake shaking/conditioning, and flake extruding/ex- 
panding. 

The systems which provide a certain desolventizing effect 
will not be discussed here, because their main purposes are 
not the predesolventizing; this is only a positive side-effect 
of these systems. 

The Schnecken-type desolventizer is also excluded, be- 
cause of the enormous heat exchange surface and geometry 
to comply with the requirements defined in Figure 3 which 
make it impractical to incorporate into existing extraction 
plants. 

In Figure 5, in confirmation of figures already in the lit- 
erature, the effect of increased drainage time is shown and 
the additional reduction of the solvent retention by forcing 
a solvent gas flow through the meal bed. 
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FIG. 4.  Possible location of predesolvendzing systems. 
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FIG. 5. Solvent retention as a function of  the drainage time. 
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PREDESOLVENTIZING OF SOYBEAN MEAL 

In Fig~?re 6, the selected predesolventizing systems for 
comparative .purposes are listed with the indication of their 
location in an extraction plant and their basic features. 

Table I compares the predesolventizing performances 

and efficiencies of the different systems on the basis of 
utility consumption and investment. 

Figure 7 gives the cumulative savings vs the investment 
costs over a 10-year operation period. 
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Comparison of the Different Predesolventizing Systems 
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